How do we see things?

- When we see, we sense light.
- When we see an object, the light that reaches our eyes can come from two different processes:

1. The light can be emitted directly from the object (object=light source), like a light bulb or glow stick.
2. The light can come from somewhere else, like the Sun, and get reflected by the object.

Most of the objects that we see are visible from diffuse reflection.

Light Interaction with Non-Luminescent Matter

- Combination of transmission, reflection, and absorption:

T\%+R\%+A\%=100\%

- No material is 100% transparent.
- No material is 100% absorbing either.

Reflection

bouncing of light off the surface, change in the direction of travel backwards

- Specular reflection: if a surface is perfectly smooth, rays of light move out in definite directions.
- Diffuse reflection: if a surface is not smooth, the light rays are scattered in many random directions by microscopic details (irregularities).

Scattering

light ray moves over to the side

 in all directions rather than forward, backward or being absorbed

- Scattering is due to localized non-uniformities (scattering centers) in the medium through which light passes.
- The most critical factor is the scattering centers size relative to the wavelength of the light being scattered.
- Amount of the scattered light can strongly depend on the wavelength of light.

I See Skies of Blue...

Longer path through atmosphere At sunset, means more violet, blue and green are completely scattered away, but red and orange are still there!

Sunlight
contains all the colors.
Atmospheric molecules scatter light

Violet and blue are scattered most...
..we see blue because our sensitivity to violet is very low!

The color of an object depends on which wavelengths of light the object reflects. Each of these flowers is illuminated by white sunlight and reflects the "color" that you see.

Similarly,

color is defined by wavelength Let's measure it!
each of these colored paper fans is illuminated by white light and reflects the color that you see.

Reflected Light Spectrum "How much of each color bounces off?"

Selective reflection of sunlight off colored paper fans,
blue
green
yellow
orange red black.

Question: what would a white paper curve look like? ...and what about that pink fan?

... so how do we see color?

The brain perceives color based on two major light detectors in the eye:

1. Cone cells detect color

000
$>$ each type of cone cell absorbs specific colors (wavelengths) of light
$>$ the number of cone cell types creates the range and detail of color an eye can see (distinguish).
2. Rod cells detect intensity
$>$ shades of a color (either light or dark)
$>\sim 1000 x$ more sensitive than cone cells
$>$ maximum sensitivity at $\sim 500 \mathrm{~nm}$
$>$ retina contains about 20 times more rods than cones.
Photopic vision - bright light, cones. Scotopic vision - in the dark, rods.

Human Eye Structure

The macula has high concentration of cones and is responsible for the central, high-resolution, color vision under good light conditions.

Learning Process

Our visual abilities such as focusing (accommodation), moving the eyes accurately (eye tracking), using the eyes together (eye teaming), and the brain processing what it sees (visual processing including color recognition) are learned skills.

- At birth, we can only see as far as 7-10 inches away and in two dimensions only.
- By 1 month, the useful sight distance grows to about 3 feet, depth perception and 3D vision begin to appear.
- By 6 month, vision is almost fully developed, clarity and sharpness close to an adult.

By ~3 years of age

complete development of color vision is achieved.

Do you see what I see?

Image recognition is based on
current observation and
prior information.

It is another very important learned skill!

Evolution of Color Vision

Mantis shrimp has 12 distinct photoreceptor types!

- There are more than 500 known species of mantis shrimp, which range in size from less than an inch to over a foot long.
- They mainly live among the coral reefs of tropical oceans - one of the most colorful environments on Earth.
- The mantis shrimp eyes are considered to be the most complex eyes in the animal kingdom.
- With its 12 cones, the mantis shrimp is able to immediately recognize basic colors just by scanning an object with their eyes, rather than using the brain to distinguish different colors of light.
- While it can make quick and reliable determinations of basic color, the creature is rather bad at discriminating close colors from one another.

Color Formation

- The three color receptors in the human eye allow us to see millions of different colors.
- Color formation mechanism in the eye is additive.
- The additive primary colors are red, green, and blue (RGB).

- All the different hues of color that we see can be made by changing the proportions of red, green, and blue light.

Mixing light is additive.

- Inks, dyes, and paints get their color from a subtractive process.
- Chemicals, known as pigments, absorb some colors (that is, subtract from white light) and allow the rest to be reflected - this reflected light makes the color you actually see.
- The subtractive primary colors are cyan, magenta, and

(CMY).
Mixing paints or pigments is subtractive.

...computer screen IN DETAIL

 mini in iniminimin

 good screens have about 100-200 PPI

...something

 printed

Is Color Real?

Additive color mixing is subjective - it provides only the sensation of color.

- Actual wavelength may not be present within the combined spectra of the incoming light.
- For the eye-brain system, there is no difference between pure yellow light and red-green combination.

- What about PINIK? MAGENTA? PURPLE?
- Combination colors - do not exist within the spectrum of white light, but are recognized as distinct colors by human visual system.
...actually, all "colors" we see could be considered a trick of the mind :

What color is this tulip? And why?

Indoor and outdoor lighting can be quite different!

Incandescent light bulb spectrum

much more red+yellow than blue

red and blue components are similar

