Homework 24.

Heisenberg's uncertainty principle

Please try to solve problems below using Heisenberg's uncertainty principle: $\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$, where Δx is uncertainty of the particle coordinate, Δp – uncertainty in the particle momentum and \hbar is the Planck's constant: $\hbar = 6.63 \cdot 10^{-34} J \cdot s$

- 1. A particle of mass m has a position uncertainty equal to its de-Broglie wavelength. What is the minimum relative uncertainty of its velocity $\Delta w/v$?
- 2. A potential energy of a one-dimensional particle is expressed as:

$$E_p = \frac{kx^2}{2},$$

where k is a constant and x is the particle's coordinate. Use Heisenberg's uncertainty principle to estimate the minimum total energy (kinetic plus potential) of the particle as a function of m, k and \hbar .