Curved Mirror

- C center of curvature
- R radius of curvature

Curved Mirrors (concave)

- F focal point
- f focal length (also equal to $1 / 2 R$)

- Virtual image produced at a point where light rays appear to come from
- Real image produced when rays of light intersect (can be displayed on a surface)

Mirror Terminology

- Inverted
- Upright

Convex mirror

Light source

 1

Focal point

Concave Mirrors

- Curved inward
- Converges light rays
- Used to produce magnified virtual images
- Can also produce real images
- Example use = make-up mirror

Convex Mirrors

- Outwardly curved
- Diverges light rays
- Image is always virtual
- Image distance is always negative
- Focal length is always negative

Uses of Convex Mirrors

- Can provide a view of a large area (like in a convenience store)
- Used on passenger sideview mirrors with the warning "objects are closer than they appear"

Ray diagrams for curved mirrors

- 1. Tip of object to mirror parallel to principal axis (reflects through focal point)
- 2. Tip of object on a line that contains the focal point (reflects parallel to principal axis)
- 3. Tip of object through center of curvature (reflects back along itself)

Homework 24

Problem 1

In the figure on the right, indicate the smallest size of the mirror that will allow the person to see all of own reflection.

Problem 2

In the figure below, construct the image of the object reflected in the convex mirror

