Homework for May 12, 2024.

Algebra/Geometry. Complex numbers.

Please, complete the previous homework assignments. Review the classwork handout on complex numbers and complete the exercises. Solve the following problems.

Problems.

1. Find all complex numbers *z* such that:

a.
$$z^{2} = -i$$

b. $z^{2} = -2 + 2i\sqrt{3}$
c. $z^{3} = i$

Hint: write and solve equations for a, b in z = a + bi.

- 2. On the complex plane, plot all fifth order roots of 1 and all fifth order roots of -1.
- 3.
- a. Find all roots of the polynomial $z + z^2 + z^3 + \dots + z^n$
- b. Without doing the long division, show that $1 + z + z^2 + \dots + z^9$ is divisible by $1 + z + z^2 + z^3 + z^4$.
- 4. Find the roots of the following cubic equations by heuristic guess-andcheck factorization,

a.
$$z^{3} - 7z + 6 = 0$$

b. $z^{3} - 21z - 20 = 0$
c. $z^{3} - 3z = 0$
d. $z^{3} + 3z = 0$
e. $z^{3} - \frac{3}{4}z + \frac{1}{4} = 0$

5. Which transformation of the complex plane is defined by:

a.
$$z \rightarrow iz$$

b. $z \rightarrow \left(\frac{1-i}{\sqrt{2}}\right)z$
c. $z \rightarrow \left(1+i\sqrt{3}\right)z$
d. $z \rightarrow \frac{z}{1+i}$
e. $z \rightarrow \frac{z+\bar{z}}{2}$
f. $z \rightarrow 1-2i+z$
g. $z \rightarrow \frac{z}{|z|}$
h. $z \rightarrow i\bar{z}$
i. $z \rightarrow -\bar{z}$

6. Find the sum of the following trigonometric series using de Moivre formula:

$$S_1 = \cos x + \cos 2x + \dots + \cos nx = ?$$
$$S_2 = \sin x + \sin 2x + \dots + \sin nx = ?$$

Algebra: polynomials recap.

Review the classwork notes on polynomials, factorization and Vieta theorem. Solve the following problems; skip those you already solved.

Problems.

- 1. Write Vieta formulae for the cubic equation, $x^3 + Px^2 + Qx + R = 0$. Let x_1, x_2 and x_3 be the roots of this equation. Find the following combination in terms of *P*, *Q* and *R*,
 - a. $(x_1 + x_2 + x_3)^2$ b. $x_1^2 + x_2^2 + x_3^2$ c. $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}$ d. $(x_1 + x_2 + x_3)^3$
- 2. The three real numbers *x*, *y*, *z*, satisfy the equations:

$$x + y + z = 6$$
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{11}{6}$$
$$xy + yz + zx = 11$$

- a. Find a cubic polynomial whose roots are *x*, *y*, *z*b. Find *x*, *y*, *z*
- 3. Find two numbers *u*, *v* such that:

$$u + v = 6$$
$$uv = 13$$

4. Find three numbers, *a*, *b*, *c*, such that

$$a + b + c = 2$$
$$ab + bc + ca = -7$$

abc = -14

5. Find all real roots of the following polynomial and factor it.

a. $x^8 + x^4 + 1$ b. $x^4 - x^3 + 5x^2 - x - 6$ c. $x^5 - 2x^4 - 4x^3 + 4x^2 - 5x + 6$

- 6. Perform the long division, finding the quotient and the remainder, on the following polynomials.
 - a. $(x^3 3x^2 + 4) \div (x^2 + 1)$ b. $(x^3 - 3x^2 + 4) \div (x^2 - 1)$