MATH 5:
 GEOMETRY 4.

Special quadrilaterals: Parallelogram, Rhombus, Trapezoid

Recall that a parallelogram is a quadrilateral in which opposite sides are parallel. Here are some of the properties of parallelograms; all of them were either proved before or will be proved in this homework.

1. In a parallelogram, opposite sides are equal. Conversely, if $A B C D$ is a quadrilateral in which opposite sides are equal: $A B=C D, B C=A D$, then $A B C D$ is a parallelogram.
2. In a parallelogram, diagonals bisect each other, i.e. the intersection point of two diagonals is the midpoint of each of them. Conversely, if $A B C D$ is a quadrilateral in which diagonals bisect each other, then $A B C D$ is a parallelogram.
3. In a parallelogram, opposite angles are equal.

A rhombus is a quadrilateral in which all four sides are equal. By property 1 above, any rhombus is also a parallelogram, so all the above properties hold. In addition, in a rhombus diagonals are perpendicular (shown in previous homework).

A trapezoid is a quadrilateral in which one pair of opposite sides are parallel: $A D \| B C$. These parallel sides are usually called bases.

A trapezoid does not have as many useful properties as a parallelogram, but there are several useful things you will see in problem 7 .

Abstract

Area Recall that the area of a rectangle is (length) \times width, and area of a right triangle with legs a, b is $\frac{1}{2} a b$ (because putting together two such triangles we get a rectangle with sides a, b). Here are more formulas:

Area of a triangle with base b and height h is $\frac{1}{2} b h$ Area of a parallelogram with base b and height h is $b h$ Area of a trapezoid with bases a, b and height h is $h \times \frac{a+b}{2}$

Homework

Warning: in this homework, more than ever, you will need results of previous exercises when doing the next one. So when doing, say, exercise 2 , see if you can make use of exercise 1 .

1. Let $A B C D$ be a quadrilateral such tath $A B=C D, A B \| C D$. Prove that then $A B C D$ is a parallelogram. [Hint: show that tirangles $\triangle A B D, \triangle C D B$ are congruent.]
2. Let $A B C D$ be a parallelogram, and let M, N be midpoints of sides $A B, C D$. Prove that then $A M N D$ is a parallelogram, and deduce from this that $M N \| A D, M N=A D$.
3. (a) Prove that if in a quadrilateral $A B C D$ diagonals bisect each other (i.e., intersection point is the midpoint of each of the diagonals), then $A B C D$ is a parallelogram. [Hint: find some congruent triangles in the figure.]
(b) Prove that if in a quadrilateral $A B C D$ diagonals bisect each other and are perpendicular, then it is a rhombus.
4. To check whether a piece of paper is a square, John folds it along a diagonal. If the corners match, he decides it is a square. Is he right? What if he folds along both diagonals?
5. Can you cut a trapezoid into pieces from which you can construct a rectangle?
6. Let $A B C D$ be a trapezoid with bases $A D, B C$. Let M be midpoint of side $A B$ and N - midpoint of side $C D$. Prove that $M N \| A D$ and $M N=\frac{A D+B C}{2}$.
Read the solution to this problem below and try your best to understand it. When you think that you understood everything, take a piece of paper and write a solution yourself without looking at the one written here. If you have questions about this problem that you can not answer yourself, bring them to the class.

Solution

Draw a line $C^{\prime} D^{\prime}$ through point N parallel to $A B$. Then the two shaded triangles are congruent by ASA, so N is also the midpoint of $C^{\prime} D^{\prime}$. On the other hand, $A B C^{\prime} D^{\prime}$ is a parallelogram, so $M N$ is the line connecting midpoints of two sides of a parallelogram. Thus, by Problem 2 in this homework, $M N \| A D, M N=A D^{\prime}=B C^{\prime}$. Denote $x=C C^{\prime}=B B^{\prime}$. Then $B C^{\prime}=B C+x, A D^{\prime}=A D-x$. Since $A B C^{\prime} D^{\prime}$ is a parallelogram, $B C^{\prime}=A D^{\prime}$, so $B C+x=A D-x$. Solving
 for x, we get $x=\frac{A D-B C}{2}$, so $M N=B C^{\prime}=B C+x=\frac{A D+B C}{2}$.

