Review of operations with fractions:

Fraction addition: $\quad \frac{5}{12}+\frac{2}{15}=$

1. Find common denominator, which is LCM.
2. Add, simplify if needed.

$$
\frac{5}{12}+\frac{2}{15}=\frac{5 \cdot 5}{60}+\frac{2 \cdot 4}{60}=\frac{25+8}{60}=\frac{33}{60}=\frac{33}{60}: \frac{3}{3}=\frac{11}{20}
$$

Fraction subtraction: $\quad 3 \frac{2}{15}-\frac{5}{12}=$

1. Find common denominator, which is LCM.
2. Borrow 1 if needed,
3. Subtract, simplify if needed.
$3 \frac{2}{15}-\frac{5}{12}=3 \frac{2 \cdot 4}{60}-\frac{5 \cdot 5}{60}=3 \frac{8}{60}-\frac{25}{60}=2 \frac{68}{60}-\frac{25}{60}=2 \frac{43}{60}$

Fraction multiplication: $\quad \frac{3}{4} \cdot \frac{2}{3}=$

1. Multiply numerators and denominators: $\frac{3}{4} \cdot \frac{2}{3}=\frac{3 \cdot 2}{4 \cdot 3}$
2. Simplify by using number prime factorization: $\quad \frac{3}{4} \cdot \frac{2}{3}=\frac{3 \cdot 2}{4 \cdot 3}=\frac{3 \cdot 2}{2 \cdot 2 \cdot 3}=\frac{1}{2}$

Fraction division: $\frac{1}{2} \div \frac{2}{3}=$

1. Find a reciprocal (inverse) of the divisor. Reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$.
2. Turn division into multiplication and simplify by using prime factorization:

$$
\frac{1}{2} \div \frac{2}{3}=\frac{1}{2} \cdot \frac{3}{2}=\frac{1 \cdot 3}{2 \cdot 2}=\frac{3}{4}
$$

Exponents review:

$$
\begin{gathered}
b^{n} \times b^{m}=b^{n+m} \\
\left(b^{2}\right)^{3}=(b \cdot b)^{3}=(b \cdot b) \cdot(b \cdot b) \cdot(b \cdot b)=b^{2 \cdot 3}=b^{6} \\
(a \cdot b)^{3}=(a \cdot b) \cdot(a \cdot b) \cdot(a \cdot b)=a \cdot a \cdot a \cdot b \cdot b \cdot b=a^{3} b^{3} \\
(a \cdot b)^{n}=a^{n} b^{n}
\end{gathered}
$$

$$
a^{-n}=\frac{1}{a^{n}}
$$

1. Compute: (Remember the common denominator is LCM, borrow 1 from the wholes if needed, $D O$ NOT convert the entire whole number into a fraction.)
(a) $4 \frac{5}{12}-\frac{8}{9}=$
(b) $1 \frac{1}{30}+\frac{5}{24}=$
2. Compute: (First make all fractions irregular; then multiply)
(a) $\frac{9}{16} \cdot \frac{4}{45}=$
(b) $3 \frac{3}{7} \cdot \frac{7}{24}=$
3. Compute: (First make all fractions irregular; then divide)
(a) $1 \frac{1}{4} \div 2 \frac{1}{2}=$
(b) $\frac{4}{13} \div \frac{11}{13}=$
4. Compute:

$$
\frac{2^{3} \cdot 3^{2} \cdot 6^{8}}{2^{10} \cdot 3^{6}}=\quad \frac{2^{5}}{2^{-5}}-\frac{2^{11}}{2}=
$$

Geometry:

We have discussed congruent objects. Two objects are congruent if

Congruent or Similar?

So, if the shapes become the same:
When you ... Then the shapes are ...
... only Rotate, Reflect and/or Translate
... also need to Resize
\square

Congruent

Similar

Congruent Triangles Rules: (\cong Congruent symbol)

1. 3 Sides are equal (SSS)

2. Angle Side Angle are equal (ASA)

3. Angle Angle Side are equal (AAS)

Angle Angle Angle (AAA): When three angles of the triangles are equal, we can say that the two triangles are similar triangles. That is, the corresponding angles are having equal measurement.

Area of a triangle.

$$
S_{\Delta}=\frac{1}{2} h \times a
$$

The area of a triangle is equal to half of the product of its height and the base, corresponding to this height.

For the acute triangle it is easy to see.

$$
S_{\square}=h \times a=x \times h+y \times h
$$

$$
\begin{gathered}
S_{\triangle A B X}=\frac{1}{2} h \times x, \quad S_{\triangle X B C}=\frac{1}{2} h \times y, \quad S_{\triangle A B C}=S_{\triangle A B X}+S_{\triangle X B C} \\
S_{\triangle A B C}=\frac{1}{2} h \times x+\frac{1}{2} h \times y=\frac{1}{2} h(x+y)=\frac{1}{2} h \times a
\end{gathered}
$$

For an obtuse triangle, for one out of the three heights, it is not so obvious.

$$
\begin{gathered}
S_{\triangle X B C}=\frac{1}{2} h \times x, \quad S_{\triangle X B A}=\frac{1}{2} h \times y \\
S_{\triangle A B C}=S_{\triangle X B C}-S_{\triangle X B A}=\frac{1}{2} h \times x-\frac{1}{2} h \times y \\
=\frac{1}{2} h \times(x-y)=\frac{1}{2} h \times a
\end{gathered}
$$

